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Abstract

Weighted essentially non-oscillatory (WENO) simulations of the reshocked two-dimensional single-mode Richtmyer—
Meshkov instability using third-, fifth- and ninth-order spatial flux reconstruction and uniform grid resolutions corre-
sponding to 128, 256 and 512 points per initial perturbation wavelength are presented. The dependence of the density,
vorticity, simulated density Schlieren and baroclinic production fields, mixing layer width, circulation deposition, mixing
profiles, production and mixing fractions, energy spectra, statistics, probability distribution functions, numerical turbulent
kinetic energy and enstrophy production/dissipation rates, numerical Reynolds numbers, and numerical viscosity on the
order and resolution is investigated to long evolution times. The results are interpreted using the implicit numerical dissi-
pation in the characteristic projection-based, finite-difference WENO method. It is shown that higher-order higher-resolu-
tion simulations have lower numerical dissipation. The sensitivity of the quantities considered to the order and resolution is
further amplified following reshock, when the energy deposition by the second shock-interface interaction induces the
formation of small-scale structures. Lower-order lower-resolution simulations preserve large-scale structures and flow
symmetry to late times, while higher-order higher-resolution simulations exhibit fragmentation of the structures, symmetry
breaking and increased mixing. Similar flow features are qualitatively and quantitatively captured by either approximately
doubling the order or the resolution. Additionally, the computational scaling shows that increasing the order is more
advantageous than increasing the resolution for the flow considered here. The present investigation suggests that the
ninth-order WENO method is well-suited for the simulation and analysis of complex multi-scale flows and mixing
generated by shock-induced hydrodynamic instabilities.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Richtmyer—Meshkov instability is a fundamental fluid instability that develops when perturbations on
an interface separating gases with different properties grow following the passage of a shock. This instability is
typically studied in shock tube experiments, in which an incident shock passes through an initially perturbed
interface separating the gases. Following the passage of the shock, the interface is set in motion along the
direction of shock propagation and a transmitted shock enters the second gas. The misalignment of Vp
and Vp causes a deposition of vorticity @ =V x u on the interface through baroclinic vorticity production
P = (Vp x Vp)/p*: in two dimensions

do

s P— oV -u, (1)
where d/d¢ = 0/0t + u - V is the convective derivative. The vorticity deposited on the interface by the shock drives
the instability, resulting in interpenetrating bubbles and spikes. Complex roll-ups and vorticity with strong cores
later form. The transmitted shock reflects from the shock tube end wall and interacts with the evolving interface
during reshock, further contributing to the appearance of complex interacting fluid and wave structures.

In the present work, the formally high-order accurate weighted essentially non-oscillatory (WENO) shock-
capturing method using a third-order total-variation diminishing (TVD) Runge-Kutta time-evolution scheme
([1] and references therein) is applied to the reshocked two-dimensional single-mode Richtmyer—Meshkov
instability for long evolution times. The initial conditions and computational domain are modeled [2] after
the single-mode, Mach 1.21 air(acetone)/SF4 shock tube experiment of Collins and Jacobs [3]. As the Richtm-
yer—Meshkov instability-induced flow contains shock waves, a direct numerical simulation (DNS) is not pos-
sible due to the prohibitively small scales needed to resolve the complex interactions of the shock with the
density interfaces and the shocks themselves. As a result, numerical investigations of this instability typically
utilize conservative Eulerian shock-capturing methods that do not resolve all of the spatial scales and small-
scale interactions, but instead ensure that fundamental quantities are conserved across a shock and that the
shock speed is accurately captured. As numerical results from such simulations are used to interpret and to
better understand the physical mechanisms in the evolution of the Richtmyer—Meshkov instability, it is essen-
tial to ascertain how such results depend on the numerical algorithm (e.g., the order of flux reconstruction and
resolution in the present study).

This study systematically and self-consistently explores and quantifies the sensitivity of a broad array of
quantities characterizing single-mode reshocked Richtmyer—Meshkov instability-induced mixing on the order
of WENO flux reconstruction (third, fifth and ninth) and on the grid resolution (128, 256 and 512 points per
initial perturbation wavelength). Most of these quantities were previously considered in the description of
amplitude growth [2] and of the physics of reshock [4]. Here, the density, vorticity, simulated density Schlieren
and baroclinic vorticity production fields are qualitatively compared from the simulations. Also compared are
the mixing layer widths, circulation, mixing profiles, production and mixing fractions, energy spectra,
statistics, probability distribution functions, numerical turbulent kinetic energy and enstrophy production/dis-
sipation rates, numerical Reynolds numbers and numerical viscosities. As the results were obtained for a two-
dimensional Euler flow, the differences in these quantities depend solely on the numerical dissipation and not
on molecular dissipation and diffusion, or on physics due to vortex stretching present in three dimensions.
Most studies based on the solution of the Euler equations have focused on the numerical ‘convergence’ of
some small set of quantities, such as the perturbation amplitude or mixing layer width in the Rayleigh-Taylor
instability [5-7] and Richtmyer—Meshkov instability [8-10], over limited evolution times with respect to grid
refinement. The present work is conducted in the spirit of the two-dimensional investigation of double Mach
reflection and single-mode Rayleigh-Taylor instability [11], which emphasized the computational advantage
of higher-order (ninth) WENO schemes over lower-order (fifth) schemes for complex flows. The present study
is both quantitative and qualitative, and examines to what extent different orders of reconstruction and res-
olutions capture physical quantities characterizing Richtmyer—Meshkov instability-induced mixing. The
WENO method is well-suited for such an investigation, as it is possible to perform simulations identical in
every other respect except for the reconstruction order, allowing a self-consistent study distinct from utilizing
entirely different numerical methods with different formal orders of spatial and temporal accuracy [12].
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This paper is organized as follows. The numerical method and the set of simulations of the two-dimensional
reshocked Richtmyer—Meshkov instability using different orders of WENO reconstruction and grid resolu-
tions are summarized in Section 2, including a discussion of the benefits of formally high-order (high-resolu-
tion) methods for investigating complex flows with shocks. The effects of order and resolution on the density,
vorticity, simulated density Schlieren and baroclinic vorticity production fields are discussed in Section 3. The
effects of order and resolution on the mixing layer width and circulation deposition are discussed in Section 4.
The effects of order and resolution on the mixing profiles, production and mixing fractions, energy spectra,
statistics, and probability distribution functions are discussed in Section 5. As the results depend on the intrin-
sic numerical dissipation, a quantitative estimate of this dissipation is presented in Section 6. Finally, conclu-
sions, including a discussion of the relative computational cost of the simulations, are presented in Section 7.

2. The WENO method and two-dimensional simulations of reshocked single-mode Richtmyer—Meshkov
instability

The WENO reconstruction in the conservative finite-difference shock-capturing method used in the present
study is briefly described, and its benefits for investigating complex hydrodynamic flows with shocks are dis-
cussed here. In particular, as shown later, formally higher-order reconstructions are less dissipative and have
greater resolving power than lower-order ones [13]: this demonstrates that high-order WENO methods are
suitable for investigating multi-dimensional shock-driven flows in which the dynamics of a wide range of scales
and complex wave structures must be characterized with high fidelity.

2.1. Equations solved and description of the WENQO algorithm
In the present simulations, the Euler equations augmented by the mass fraction conservation equation for

the second gas (used here to determine the mixing layer width and to quantitatively assess various mixing
properties)

0¢p OF 0G

B S i Ml 2

o T Ty )
are solved, where the conservative variables, ¢, and inviscid fluxes, F and G, are

& = (p, pu, pv, pe, pm)", (3)

F = (pu, pu® + p, puv, (pe + p)u, pmu)", (4)

G = (pv, puv, pv* + p, (pe + p)v, pmv)". (5)

Here, p is the density, u = (u,v) is the velocity, p is the pressure, e = (1> + v3)/2 + p/(y — 1) is the total energy
per unit mass, m is the mass fraction (here of the denser sulfur hexafluoride gas, SFg) and p = pRT is the ideal
gamma law gas pressure (R is the gas constant).

The simulations were performed using the finite-difference WENO shock-capturing method [1]. The eigen-
system of fluxes in the Euler equations is obtained from the Jacobian of the Roe-averaged fluxes in each spatial
dimension. The eigenvalues and eigenvectors are obtained via the linearized Roe Riemann solver [14]. Lax—
Friedrichs flux-splitting is used to split the original fluxes into their positive and negative components (with
additional artificial dissipation to obtain smoother fluxes [1]). The positive and negative flux components
are then projected in the characteristic fields using the left eigenvectors to form the positive and negative char-
acteristic fields at each cell center. A piecewise-polynomial of degree r is used to reconstruct the projected
fluxes at the cell boundaries with high-order of accuracy: a weighted convex combination of all possible
rth-degree piecewise-polynomial approximations (r = 2, 3 and 5 for third-, fifth- and ninth-order, respectively)
of the characteristic fields using the neighboring cell-centered values is constructed and evaluated at the
boundaries of a given cell. For a given reconstruction order, there are r possible rth-degree piecewise-polyno-
mials, with properties depending on the smoothness of the underlying solution. As the polynomials may use
stencils containing discontinuities (and, thus, induce Gibbs oscillations), a weighted average of all of the pos-
sible polynomial reconstructions at a point is computed. The weights of the r possible stencils around a given
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cell center are computed from the projected flux via a divided difference. Essentially zero weights are assigned
to polynomials crossing discontinuities and nearly-equal weights are assigned to polynomials over smooth
regions. The formal order of accuracy for the derivative of the flux is 2r — 1 in smooth flow regions. In the
present study, the semi-discrete equations are evolved in time using the third-order total variation diminishing
(TVD) Runge—Kutta method [1].

The conservative finite-difference discretization of the Euler equations with WENO flux reconstruction con-
tains implicit truncation errors that can be regarded as a nonlinear, adaptive numerical dissipation. The pres-
ent simulations can be interpreted as a class of implicit large-eddy simulations (ILES) [15-18], in which the
equations are implicitly filtered by the discretization and the numerical dissipation is a surrogate for a dissi-
pation provided by an explicit subgrid-scale model. As the non-dissipative compressible fluid dynamics equa-
tions are formally ill-posed, this numerical dissipation regularizes the method. As a result, quantities obtained
from such simulations depend on the resolution and cannot be regarded as fully resolved. ILES methods typ-
ically dissipate velocity and scalar fluctuations approximately in the same manner numerically: the numerical
Schmidt number is of O(1), which may provide a reasonable model for the mixing of ideal gases. In principle,
the reduced numerical dissipation of high-order WENO schemes can be coupled with explicit subgrid-scale
models to perform conventional large-eddy simulations.

2.2. Benefits of the WENO method for simulating complex shocked flows

Formally high-order methods better resolve complex flow features at long evolution times than second- and
third-order methods. Higher-order methods are also more computationally efficient than lower-order methods
for the same accuracy [19,20]. In particular, sufficiently high-order WENO methods are well-suited for the
simulation of complex, compressible evolving flows containing shocks and structures having a wide range
of scales. For example, the interaction of a shock and a bubble was simulated using the fifth-order finite-dif-
ference WENO method with two gammas [21]. The advantage of WENO methods is realized in complex
multi-dimensional flows, as demonstrated here for the reshocked Richtmyer—Meshkov instability.

Upwinding in the WENO method leads to large numerical dissipation in relatively smooth flow regions
away from shocks. This dissipation can be reduced by hybridizing the WENO method with a high-order
scheme, and the resolving power can be improved by optimizing the stencil with a compact central-difference
scheme in smooth flow regions [22]. Mapped WENO schemes were developed to improve the accuracy at crit-
ical points where derivatives vanish [23]. A hybrid fifth-order compact upwind-WENO scheme was developed
for shock-turbulence interaction [24]. A hybrid scheme based on the weighted average of a compact scheme
[24] and the fifth-order WENO scheme was subsequently developed [25] using a weight function that avoids
an abrupt transition from one scheme to the other. High-order accurate, hybrid central-WENO schemes
[26,27] and a hybrid spectral-WENO scheme [28] were also recently developed. In the present work, higher-
order (ninth-order) WENO reconstruction is used instead to achieve lower numerical dissipation.

The code used presently provides an MPI parallel framework for one-, two- or three-dimensional simula-
tions of the fully-nonlinear evolution of hydrodynamic instabilities and late-time mixing generated by single-
or multi-mode Richtmyer—-Meshkov and Rayleigh-Taylor instabilities. The ratio of specific heats is constant
for both gases in the currently implemented single-gamma algorithm, so that some properties of the flow may
not be predicted very accurately (i.e., transmitted and reflected shock speeds, time of reshock, initial interface
velocity), but the mixing properties are not expected to be strongly affected by the single-gamma formulation,
as the flow is nearly incompressible over most of the evolution for the Mach number considered [29,30].

2.3. Simulations of reshocked single-mode Richtmyer—Meshkov instability

Two-dimensional simulations of the reshocked Richtmyer—-Meshkov instability modeled after the Mach
1.21 experiment of Collins and Jacobs [2,3] are presented and analyzed in the present work. The simulations
are summarized in Table 1, where WENONX indicates the order N =3, 5 or 9 with optional resolution
X=C, M or F (coarse, medium and fine grid resolution, respectively), e.g., WENOS5M is the fifth-order
WENO method with 256 points per initial perturbation wavelength. Order and resolution always refer to
the order of WENO flux reconstruction and to the spatial grid resolution, respectively. The simulations were
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Table 1
Keys used to denote simulations with different order of WENO flux reconstruction and grid resolution

Coarse (128) Medium (256) Fine (512)
Ninth-order WENO9C WENOYM WENO9F
Fifth-order WENOS5C WENO5M WENOSF
Third-order WENO3C WENO3M WENO3F

The number in parentheses is the number of grid points per initial perturbation wavelength 4.

run to a late time of 18 ms to determine the effects of the interaction of the reflected rarefaction wave with the
layer, and to investigate the late-time decay of the flow. The results presented in a separate study [2,4] were
obtained using WENOS5M and WENO9M.

The initial conditions for the numerical simulations [2] were adapted from the Mach 1.21 air(acetone)/SF¢
experimental shock tube configuration of Collins and Jacobs [3]. As the current simulations use a single-
gamma formulation, the experimental upstream conditions were matched. The adiabatic exponent
y = 1.24815 corresponding to an air(acetone) mixture was used. The pre-shock Atwood number was
A™ = (psp, = Pan)/ (Psg, + Paa) = 0.605. To match the dimensions of the shock tube test section, the computa-
tional domain had streamwise and spanwise length L, = 78 cm and L, = 8.9 cm, respectively, with the center-
line of the perturbed initial interface located at x; = 3 cm from the edge of the domain (the physical spanwise
domain was 17.8 cm, and symmetry was used in the y-direction). An adaptive domain capability in the code
allows the initial domain in x to be much smaller than L,: the initial value L, = 9.3 cm was chosen in the pres-
ent simulations. The computational domain in the x-direction was elongated in 3 cm increments until a total
length of 78 cm was attained. A CFL number of 0.45 was used in all of the simulations. The initial sinusoidal
interface n(y) = a, sin(2ny/) had pre-shock amplitude a; = 0.2 cm and wavelength A = 5.9333 cm. An initial
diffusion layer thickness of 6 = 0.5 cm was used, where the thickness function (multiplying the density) is

1 d <0,
S(x,p) = exp(—ald’) 0<d<1, (6)
0 d>1,

d=[x,+n(y)+ 6 — x)/(25), and & = —In f (B is machine zero). The initial density is shown in Fig. 1.

The following boundary conditions were used: (1) inflow at the test section entrance in the streamwise (x)
direction; (2) reflecting at the end wall of the test section in the streamwise direction, and; (3) symmetric in the
spanwise () direction corresponding to the cross-section of the test section. The reflecting boundary condition
is implemented by reversing the normal component of the velocity vector: u(x,t) = —u(x,?) at x = L, and at
the ghost points, which is exact and does not generate spurious noise.

Fig. 1. The incident shock and the initial density field, including the diffuse interface separating the air(acetone) (blue) and the SF (red),
obtained using Eq. (6). (For interpretation of color in figures, the reader is referred to the web version of this article.)
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3. The effects of order and resolution on the density, vorticity, simulated density Schlieren and baroclinic vorticity
production fields

As the Richtmyer—Meshkov instability develops, bubbles of air(acetone) ‘rise’ into the SF¢ and spikes of
SF¢ ‘fall’ into the air(acetone). Following this initial growth, the spikes form roll-ups that develop the char-
acteristic mushroom shape of the instability. The density and vorticity fields p(x,y) and w(x,y) at 6 ms are
shown in Fig. 2, before the reflected shock from the end wall reshocks the interface. The images were obtained
by rotating the density and vorticity fields from the simulations 90° counterclockwise. The spike of SF¢ (red)
rolls up and the bubble of air(acetone) (blue) ‘rises’. The vorticity shows the strong positive core rotating
counter-clockwise (red) and the strong negative core rotating clockwise (blue), corresponding to the centers
of the roll-ups. As the order and resolution increase, the roll-up becomes better defined and sharper, smal-
ler-scale features appear within, and the vorticity exhibits more concentrated, smaller cores. The roll-up in
the WENOS5SM, WENOSF and WENO9 simulations contains a vortex bilayer with strong negative vorticity
surrounded by a small layer of positive vorticity and vice versa: this bilayer becomes sharper as the order and
resolution increase, and additional complex structures form within the roll-up in the WENOO9F simulation.
Such structures have also been seen in piecewise-parabolic method simulations [31,32], and is apparently a
manifestation of a physical process observed in experiments [3,33-35]. A qualitative correspondence in both
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Fig. 2. The density and vorticity fields at 6 ms (before reshock) from the third-, fifth- and ninth-order simulations on the coarse, medium
and fine grids.
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p and o can be seen between simulations along a diagonal, so that doubling the resolution approximately cor-
responds to doubling the order (as also found in Rayleigh—Taylor instability and double Mach reflection sim-
ulations [11]).

Fig. 3 continues the comparison of p and w following reshock (which occurs at ~6.4 ms) at 7 ms, with the
bubble transforming into a spike and vice versa through inversion due to the deposition of vorticity of oppo-
site sign during reshock. The SF¢ spike penetrates into the air(acetone) and becomes narrower as it transforms
into a bubble. As the order and resolution increase, additional finer-scale complex structures appear. This is
also reflected in w, which shows that strong positive and negative cores transition into vortex bilayers, and
then into fragmented cores.

Following reshock, a transmitted shock enters the air(acetone) and a reflected rarefaction enters the SF,
resulting in a complex system of reflected and transmitted waves that further contribute to the development
of the instability and to mixing. To visualize these waves, as well as the complex structures on the interface,
the simulated density Schlieren fields [21]

#(x,300) = exp | ) 0 at) =

20 if m > m*,
max |Vp|

100 if m < m",

(7)

where m is the mass fraction of SF¢ and m”™ = 0.25 is the threshold, are shown in Fig. 4 at 7ms. A complex
system of curved intersecting waves exists in the SF¢ gas, corresponding to the reflected rarefaction, together
with fine-scale structure surrounding the spike. As the order and resolution increase, the waves become shar-
per and additional structures appear on the interface. Shock focusing on the reshocked spike can also be seen.

coarse medium

ninth-order

fifth-order

third-order

Fig. 3. The density and vorticity fields at 7 ms (after reshock) from the third-, fifth- and ninth-order simulations on the coarse, medium
and fine grids.
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Fig. 4. The simulated density Schlieren fields at 7 ms (after reshock) from the third-, fifth- and ninth-order simulations on the coarse,
medium and fine grids.

The density at 12 ms in Fig. 5 shows the evolution of the main spike, which develops several roll-ups and
additional complex structure. The difference among the orders and resolutions is now significant. In particular,
the WENO3 and WENOSC simulations retain significant coherency and symmetry, with a clearly identifiable
dominant structure. Beginning with the WENOS5SM simulation, a progressive loss of symmetry occurs,
together with the development of increasingly finer-scale structure. This is also reflected in w, in which
large-scale organized strong cores are replaced by progressively fragmented and more concentrated cores.
The vorticity dynamics is in qualitative agreement with two-dimensional turbulence phenomenology [4]. As
the order and resolution are increased, more fragmented, smaller-scale structures form. By contrast, as the
resolution is decreased, large persistent vortical structures form. The WENO?3 results are characteristic of sim-
ulations with large numerical diffusion, as well as of simulations that are spatially underresolved. Instead, the
fifth- and ninth-order simulations exhibit symmetry breaking (also reported in other simulations with reshock
using lower-order methods [10,36] and in Rayleigh-Taylor instability simulations using the ninth-order
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Fig. 5. The density and vorticity fields at 12 ms (late time following reshock) from the third-, fifth- and ninth-order simulations on the
coarse, medium and fine grids.

WENO method [11]), which can be attributed to numerical instabilities not damped by the intrinsic dissipation
in the WENO method.

Fig. 6 illustrates the reshock process, showing the development of complex structures during the spike roll-
up at 6, 6.6, 6.8 and 7 ms from the fine grid simulations. Prior to reshock at 6 ms, the WENO?9 simulations
exhibit complex structures within the roll-up: such structures are also visible in the inner core of the WENOS5
simulations and are absent in the WENO3 simulations. During reshock, the roll-up is compressed at 6.6 ms
and forms complex structures later. The WENO3 and WENOS simulations retain a single dominant structure,
while the WENQOY simulations exhibit fragmentation.

The dynamics during reshock can be further elucidated by considering the vorticity field w(x,y) and the
baroclinic vorticity production P(x, y) during reshock, which are shown in Fig. 7 at the same times as the den-
sity fields in Fig. 6. At 6 ms, the WENOSF and WENOOF vorticities exhibit complex roll-ups with regions of
negative vorticity surrounded by positive vorticity forming a vortex bilayer. This generation of positive vor-
ticity is due to baroclinic vorticity production. The WENO?3 simulations only show a strong negative core, and
the baroclinic production does not exhibit the complex features observed in the WENO5 and WENQO9
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6 ms 6.6 ms 6.8 ms 7 ms

third-order

B ) b
fifth-order i

Fig. 6. Details of the roll-up in the density field from the ninth-, fifth- and third-order fine grid simulations at 6, 6.6, 6.8 and 7 ms.

simulations. Just after reshock at 6.6 ms, the strong negative core is significantly weakened and a layer of posi-
tive vorticity is deposited on the tip of the spike: this layer is particularly evident in the WENO3 and WENOS5
simulations, and is thinner in the WENQ9Y simulations. The vorticity forms cores at 6.8 and 7 ms, with the
WENO?Y cores more spatially compact than those in the other simulations. The baroclinic vorticity production
is also fragmented in the WENO?9 simulations. These fields illustrate the significant difference in the vorticity
dynamics for simulations including reshock performed using different orders and resolutions.

4. The effects of order and resolution on the mixing layer width and circulation deposition

The effects of order and resolution on the mixing layer width and the circulation deposition are considered
in this section. It is shown that the dependence on order and resolution is most pronounced following reshock,
with the differences among the simulations increasing with time.

4.1. The mixing layer width

To determine the mixing layer width, consider the mole fraction X(x, y, 1) = m(x, y, )M /{[1 — m(x,y, 1)1 M> +
m(x,y,t)M,}, where m is the mass fraction of SFg and M; and M, are the constant molecular weights of
air(acetone) and SFg, respectively. Spatially-averaging X in the y-direction gives

X =1 [ Xy, 0

where L, is the spanwise width of the domain. The spike and bubble locations, /() and ,(), are defined as the
x position where X > e and X < 1 — ¢, respectively, with e = 0.01 in the present investigation. The total mix-
ing layer width is the difference between the bubble and spike positions, /i(t) = £(1) — £y(?).

The dependence of the mixing layer width /(¢) on the order and resolution is shown in Fig. 8 up to 18 ms (left).
Also shown are the widths normalized by the WENOO9F width (right). Prior to reshock, /4(t) weakly depends on
the order and resolution: the flow is dominated by a single, large-scale bubble or spike, the front of which is not
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6 ms 6.6 ms 6.8 ms 7 ms

ninth-order

fifth-order

third-order

’P

Fig. 7. Details of the roll-up in the vorticity and in the baroclinic vorticity production fields from the ninth-, fifth- and third-order fine grid
simulations at 6, 6.6, 6.8 and 7 ms.

significantly affected by dissipation. The dependence on order and resolution becomes significant following
reshock, with /A(7) decreasing for lower orders and resolutions. Prior to the arrival of the reflected rarefaction
at ~11 ms, the widths become closer as the order and resolution increase. The differences are further amplified
by the arrival of the reflected rarefaction and increase later in time. At late times, the WENO3 widths differ by as
much as =5 cm as the grid is refined. By contrast, the WENOS and WENQO9 widths differ by =1 cm. The nor-
malized widths exhibit evidence for ‘convergence’ as the ratios approach unity for the WENO9 simulations.
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Fig. 8. Comparison of the time-evolution of the mixing layer width when the order and resolution are varied (left). The mixing layer
widths normalized by that from the WENOOF simulation are also shown (right). Quantities obtained using the WENO3, WENOS5 and
WENO9 simulations are shown in green, red and blue, respectively; quantities obtained on the fine, medium and coarse grid are shown
using a solid, dashed and dash-dot line, respectively. (For interpretation of color in figures, the reader is referred to the web version of this
article.)

4.2. The interfacial circulation deposition

The vorticity deposited by the shock on the interface and by baroclinic vorticity production, can be quan-
tified using the positive and negative circulation. As the vorticity field and the outward area element are par-
allel, the positive and negative circulations I'* can be approximated on the rectangular grid with spacing Ax
and Ay over U" = {7/2<y; <2} and U = {0 <y, < A/2} [4]:

Ne Ny
Fi(t) = Z Zw(xiaij t)|yj€UiAXAy‘ (9)

=1 =1
Before reshock, the positive circulations I'" in Fig. 9 are similar, increasing steadily due to baroclinic vor-
ticity production. As the spike rolls up and vorticity of opposite sign is created within the roll-ups, I'" stops
increasing and a slight decrease is observed in the WENOOF simulation. Instead, the WENO?3C circulation is
nearly constant across the layer, as the baroclinic vorticity production is small. A sharp increase in I'" occurs
at reshock, corresponding to the rapid deposition of additional vorticity on the interface. Following reshock
and prior to the arrival of the reflected rarefaction at ~11 ms, I'" from all of the simulations are qualitatively
similar, exhibiting a steady increase due to the additional vorticity deposition. After the arrival of the reflected
rarefaction, symmetry breaks and the regions U™ no longer contain vorticity of a single sign, resulting in large

differences in I'* for > 11 ms.
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Fig. 9. Comparison of the time-evolution of the positive circulation I'" before reshock (left) and after reshock (right) when the order and
resolution are varied. See Fig. 8 for the legend.
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5. The effects of order and resolution on mixing profiles, production and mixing fractions, energy spectra,
statistics and probability distribution functions

The effects of order and resolution on mixing profiles, production and mixing fractions, energy spectra, sta-
tistics and probability distribution functions are quantified in this section. The comparisons of these quantities
are conducted at 6 ms immediately before reshock, at 7 ms immediately after reshock, and at 18 ms at late
times following reshock. To facilitate the comparison of the mixing profiles, and the production and mixing
fractions, the streamwise coordinate is recentered by the midpoint x.,;q(¢) between the bubble and spike posi-
tion, and normalized by the mixing layer width /(¢). Most of the effects on the quantities considered can be
interpreted in terms of the relative numerical dissipation, with increasing order and increasing resolution asso-
ciated with decreasing dissipation. The results demonstrate that different characterizations of mixing are pos-
sible depending on the order and resolution: caution must be exercised when interpreting the results of
Richtmyer—Meshkov instability simulations as described by the Euler equations.

5.1. The mixing profiles

Up to 7 ms, the averaged mole fraction profiles X (x,7) in Fig. 10 agree at sufficiently high resolution.
A more disordered structure is observed at late times: as X measures the distribution of mass across the mixing
layer, the differences at 18 ms are due to different mass distributions among the different simulations. On aver-
age, X approaches a nearly linear profile at late times.

Fig. 10 also shows the molecular mixing profile [37,38]

m m(x.,t)
=== where f,(x,y,t) = —+—— (10)
fl,fZ 1 m();).]y,t) 1 mfgﬁyﬁt)

0(x, 1)

and f» = 1 — f; are the volume fractions of fluid 1 [air(acetone)] and fluid 2 (SFg), and ¢ signifies the spatial
average of ¢(x,y,?) over the y-direction [see Eq. (8)]. The molecular mixing profile 0(x, #) is highly sensitivity to
the order and resolution. The large peak on the air(acetone) side at 6 ms corresponds to the spike roll-up: all of
the simulations approximately capture this effect. In the regions near the stem of the spike, the WENO9 sim-
ulations yield larger 6 and a sharper transition near the boundaries than the WENO3 and WENOS simula-
tions, consistent with higher-order simulations having sharper interfaces and less numerical diffusion.
Compression caused by reshock increases 0 at 7 ms. The profile is shifted toward the air(acetone), correspond-
ing to enhanced mixing near the spike, while less mixing occurs as the new spike of SF¢ emerges due to the
inversion process. The effects of the different mass distribution and mixing across the layer among the simu-
lations are evident at 18 ms, with 6 ~ 0.75-0.8 on average for the WENO9 simulations.

A quantitative measure of mixing can be defined as follows. Suppose